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The unsteady flow past a circular cylinder which starts translating and rotating 
impulsively from rest in a viscous fluid is investigated both theoretically and 
experimentally in the Reynolds number range lo3 < R < lo4 and for rotational to 
translational surface speed ratios between 0.5 and 3. The theoretical study is based 
on numerical solutions of the two-dimensional unsteady Navier-Stokes equations 
while the experimental investigation is based on visualization of the flow using very 
fine suspended particles. The object of the study is to examine the effect of increase 
of rotation on the flow structure. There is excellent agreement between the numerical 
and experimental results for all speed ratios considered, except in the case of the 
highest rotation rate. Here three-dimensional effects become more pronounced in the 
experiments and the laminar flow breaks down, while the calculated flow starts to 
approach a steady state. For lower rotation rates a periodic structure of vortex 
evolution and shedding develops in the calculations which is repeated exactly as time 
advances. Another feature of the calculations is the discrepancy in the lift and drag 
forces a t  high Reynolds numbers resulting from solving the boundary-layer limit of 
the equations of motion rather than the full Navier-Stokes equations. Typical results 
are given for selected values of the Reynolds number and rotation rate. 

1. Introduction 
This paper presents the results of a joint theoretical and experimental study of the 

unsteady flow generated in a viscous fluid by a circular cylinder which is impulsively 
started into a uniform translational motion normal to its axis and a uniform 
rotational motion about it. The fluid motion is two-dimensional and the theoretical 
results are based on numerical solutions of the Navier-Stokes equations for 
incompressible fluids. In the experimental study, the flow is generally two- 
dimensional except for the highest rotational rate of the cylinder, where the flow 
starts to develop three-dimensional and turbulent effects which appear at later 
times. In  such cases, it  is still possible to identify many common features of the 
experimental and calculated flows, particularly up to the time for which the flow 
continues to be laminar, and even beyond in some flow regions. 

The flow field depends mainly on three parameters. The first is the Reynolds 
number R = 2Ua/v, where U is the constant speed of translation of the cylinder after 
its sudden start from rest, a is the radius of the cylinder and v is the coefficient of 
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kinematic viscosity of the fluid. The second is the velocity ratio a = aw,/U, where w, 
is the angular velocity of the cylinder about its axis. The third parameter is a 
suitably scaled time after the start of the motion, measured by r = Ut/a, where t is 
the actual time. In the present study we investigate a higher Reynolds-number range 
and higher speeds of rotation than those previously considered. In fact, no 
calculations of the unsteady flow exist for a > 1 and our object is to examine the 
effect of increase of a on both the theoretical and experimental flow a t  a fixed, high 
enough, Reynolds number. Important changes in both flows take place as 01 increases 
and many features not previously reported appear, particularly with regard to the 
suppression of the separated vortex region. 

The inhibition of vortex formation at higher rotational rates is of interest in view 
of the early investigations of %ow past rotating cylinders. It is well known that the 
effect of imposing an increasing circulation on the potential flow past a fixed circular 
cylinder leads eventually to a flow pattern with closed streamlines surrounding the 
cylinder (Goldstein 1938, p. 33). A comparable situation exists in the experimental 
studies of the development with time of the flow past a rotating circular cylinder 
(Prandtl 1927 ; Prandtl & Tietjens 1931 ; see also Goldstein 1938, plates 15-18). Here 
the circulation is generated by the rotating cylinder itself and the motion of the 
surface inhibits separation of the flow. Theoretical studies of the steady flow have 
been made by Moore (1957), Glauert (1957a, b )  and Wood (1957). These studies 
indicate that for high enough a it is possible to obtain steady flows with no vortex 
shedding for both high and low Reynolds numbers. However, these investigations 
were not based on the full Navier-Stokes equations of motion but rather on 
boundary-layer theory. 

A boundary-layer analysis of the present problem has also been considered by Ece, 
Walker & Doligalski (1984) for the case of very high Reynolds numbers (R+ C O )  by 
simply setting R = 00 in a boundary-layer formulation. Although the boundary- 
layer equations are in some ways easier to handle, the resulting solution does not 
represent in all aspects the situation a t  very high Reynolds number. For example, 
the exploded view of the streamline pattern given by Ece et al. would occupy a 
physical space covered by the entire surface of the cylinder but would have zero 
thickness when R = 00. Moreover, the magnitude and the direction of the lift force 
predicted by the boundary-layer analysis is not the same as that obtained from the 
Navier-Stokes equations for very high Reynolds number. This is demonstrated in 
the present paper and some detailed results are provided. 

Steady flows over rotating cylinders at small values of R and low rotation rates 
have been given by Loc (1975) and Ingham (1983) for R = 5, 20 and 0 < a < 0.5. A 
steady-state limit of the solution of the time-dependent Navier-Stokes equations 
together with a verification obtained from the steady-state equations has also been 
obtained using numerical methods by Badr, Dennis & Young (1989) for the same 
Reynolds numbers and for 0 < a < 1. The flow in these cases tends to a steady 
pattern generally consistent with those of Loc (1975) and Ingham (1983) but there 
are differences in the lift and drag coefficients in all three studies. For these small 
Reynolds numbers there is no vortex detachment at any stage of the unsteady flow. 

Unsteady flow past a rotating cylinder has previously been investigated 
experimentally by Coutanceau & MBnard (1985) for R = 200 and 0.5 < a < 3.25. 
Badr & Dennis (1985) gave numerical solutions of the full Navier-Stokes equations 
for small rotation rates a = 0.5, 1.0 and R = 200 and 500, in which comparisons with 
Coutanceau & MBnard’s experiments at R = 200 were given. Further comparisons of 
the experimental and calculated flow patterns a t  R = 500 and a = 0.5, 1.0 were given 
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in a note by Badr et al. (1985). The range of R considered in the present work is 
lo3 < R < lo4, while a ranges between 0.5 and 3. Numerous new effects appear when 
the Reynolds number is as high as lo3 or above and a careful correlation of calculated 
and experimental results is presented over the complete range of a. The periodic 
nature of the flow field for small values of a is visualized in the calculations, 
indicating periodicity of even the very fine details of evolution of the wake. The 
similarities and differences between the present calculations a t  high R and those 
calculated by Ece et al. (1984) from boundary-layer theory are noted. 

2. Theoretical and experimentai summary 
For a cylinder of radius a which starts its motion impulsively from rest with a 

linear velocity U and an angular velocity wo in a fluid of kinematic viscosity v ,  the 
two basic flow parameters are the Reynolds number R = 2aU/v and the velocity 
ratio a = aw,/U. Polar coordinates ( r ,  8) are taken with the origin at the centre of the 
cylinder. The translational motion of the cylinder is in the direction 0 = 7c while the 
rotational motion is counterclockwise. The unsteady Navier-Stokes equations in 
terms of the variables ( E ,  6 ) ,  where 6 = In ( r /a ) ,  are given by Badr & Dennis (1985) in 
the form 

where II/ is the stream function and [ is the (negative) scalar vorticity. These 
quantities are all dimensionless and are defined in Badr & Dennis (1985). The 
boundary conditions are based on the no-slip and impermeability conditions on the 
cylinder surface and the free-stream conditions away from it. These conditions can 
be expressed as 

and 

Badr & Dennis (1985) have developed a method of solution of (1) and (2) by means 
of the substitutions 

00 

+(g, 817) = po(t, 7 )  + Z [Fn(t, 7 )  cosn@ +fn(t, 7 )  sin no17 

C ( t ,  0 , ~ )  = po(t, 7) + Z [G,(t,7) cos no + gn(L 7 )  sin no], 

( 4 4  

(4b) 

n-1 

m 

n-1 

which are a generalization of those used by Collins & Dennis (1973) in the case of the 
symmetrical flow generated when a = 0. The equations and boundary conditions 
satisfied by the various functions appearing in the series (4) are given by Badr & 
Dennis, together with the method of solution, which makes use of the boundary-layer 
structure, but without any approximations to the Navier-Stokes equations. The 
only other point worth emphasizing is that the boundary conditions on the functions 
Fn((,7) and fn(t,7) corresponding to (3) are utilized to deduce sets of global 
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conditions, termed integral conditions (see Dennis & Quartapelle (1989) for further 
explanation of these conditions), on the functions Gn([,7) and g n ( [ , T ) .  These are 
employed in the solution procedure to  ensure that all necessary conditions of the 
problem are satisfied. For example, Badr & Dennis (1985) have shown that the 
condition 

/om e2fG, (c, 7) d[ = 2a, (5) 

which expresses the fact that  the circulation round a contour at infinite distance from 
the cylinder and concentric with it remains zero with time, must be satisfied in order 
for the pressure on the cylinder surface to remain single-valued. It is easily shown 
that ( 5 )  does enforce zero circulation round an infinitely large contour surrounding 
the cylinder by integrating once in the [-direction the equation for Go([, 7 )  obtained 
by substitution of (4a, b )  in (2) and employment of the result 

for the circulation r([, 7 )  round a circular contour [ = 5,. Sets of integral conditions 
on Qn(<,7) ,  g n ( g , T )  for n =I= 0 ensure that the correct external flow conditions are 
satisfied. 

The solution procedure using boundary- layer coordinates has been described by 
Badr & Dennis (1985). The grid size Az in the coordinate z ,  defined by 6 = 2(27/R)$ 
z, is more or less independent of R.  The value Az = 0.05 was taken for the Reynolds 
numbers R = lo3 and lo4 considered here. The maximum value of the computational 
field length was zM = 8 and the maximum number of terms used in the series (4a,  b) 
corresponds to replacing the infinite upper limit in each sum by the finite integer N 
= 20. The discussion of the choice of these various parameters is in principle the same 
as that given by Badr & Dennis (1985, pp. 459-460) and the time steps AT used for 
the evolution of the solution follow exactly those set out in that discussion. 

In  the corresponding experimental study, the set-up is in principle the same as that 
used by Coutanceau & Bouard (1977) and Bouard & Coutanceau (1980) to  study the 
evolution of the wake in the case of no rotation (a = 0), but with various 
modifications described by MBnard (1984). The cylinder moves vertically upwards in 
a large tank filled with water. The rotational motion is linked mechanically to  the 
translational one and the cylinder starts translating and rotating simultaneously 
from rest. However, because of inertia effects, the actual start of the motion is quasi- 
instantaneous and the limiting steady translational and rotational speeds are 
reached after a few hundredths of a second. Nevertheless, this is a good 
approximation to the theoretical impulsive start of the motion. 

Two cylinders, of diameters 4cm and 6 cm, were used. The liquid tank has 
dimensions of 46 x 56 cm in cross-section and 1 m height. The cylinder moves 
midway between the tank walls to minimize the wall effects, while the clearance 
between the ends of the cylinder and the tank walls is as small as possible to  reduce 
end effects. The flow is visualized using small, brightly illuminated, solid plastic 
tracer particles of Rilson powder which are photographed a t  given selected times by 
a camera translating with the cylinder. Essential details of the whole procedure are 
given by Coutanceau & MBnard (1985, pp. 402405). 
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3. Calculated and experimental results and comparisons 
I n  this section, we present a comparative study of both the calculated and 

experimental evolution of the flow field for R = lo3 and 0.5 < a < 3. At low 
rotational rates a = 0.5,1.0, the general nature of the time development of the flow 
is similar to that a t  corresponding values of a for R = 200 and 500 reported by 
Coutanceau & M6nard (1985) and Badr & Dennis (1985), especially with regard to the 
formation and shedding of the large vortices. However, on the microscale the flow a t  
R = lo3 is different since many secondary vortices are formed adjacent to the large 
ones. Because of limitations of the experimental apparatus, i t  is only possible to 
observe the formation of the first few vortices for any value of R and a and their 
detachment into the wake of the cylinder. Accordingly, comparisons between 
theoretical and experimental results are carried out up to the time of termination of 
the experiment. However, the numerical solutions were continued to larger times. 

We first consider the details of the case R = lo3, a = 0.5. Immediately after the 
impulsive start of the motion, the stagnation point T, which would be a t  the rear of 
the cylinder in the case of zero rotation (a = 0) follows the direction of rotation round 
to an instream position (located by the condition a$/alj = a$/W = 0) a t  about 
0 = 135", r / a  = 1.04 where it starts to stabilize. I ts  subsequent location can be seen in 
figure 1, which shows the instantaneous streamline patterns adjacent to the cylinder 
for T = 1 to 16. The birth of the first eddy E, with closure point S, occurs a t  T = 1 
in an instream position of the region 0 < 0 < 90" (figure l a ) .  A discussion of the 
formation of such an eddy has been given by Badr & Dennis (1987). The eddy E, is 
followed almost immediately by the formation of the second eddy E, in the region 
270" 6 8 < 360' (see figure 1 b ) .  At T = 3, a secondary eddy E; appears in the region 
0 < 0 < 90" and is seen in both figures 1 ( c )  and 1 (c'). This phenomenon is similar to 
that observed by Bouard & Coutanceau (1980) in the case of a = 0. At the same time 
T = 3 a secondary eddy Ei also appears near the cylinder in the neighbourhood of E,. 
The elongation of Ei in the direction of the cylinder rotation tends to form a tongue 
of fluid which at T = 4 gives rise to  a new secondary eddy denoted by E; in figures 
1 ( d )  and 1 (d') .  Thus the main vortex E, is now accompanied by two small eddies Ei 
and E:. 

At about T = 6 (figure l e ) ,  the size of E, reaches its maximum while it starts 
moving in the downstream direction. On the other hand the secondary vortices E; 
and E; have disappeared while EL is vanishing. At 7 = 8, the main vortex E, is shed 
away from the cylinder and phenomena analogous to  the ones observed by 
Coutanceau & MBnard (1985), Badr & Dennis (1985) for R = 200 and 500 appear. 
Thus Ei is formed upstream of El, i.e. here in place of E;, while a t  the same time E, 
has been considerably elongated along the direction of the cylinder rotation and a 
new eddy E: is well formed in the fluid corner between E, and the surface of the 
cylinder, i.e. here in place of Ei; but, for this high value of R, the eddy Eg is again 
accompanied by a secondary eddy E:. This situation is indicated in figure 1 (f ). 

We note that in the analysis of both theoretical and experimental results special 
care has been taken to determine the location of the centres of vortices as well as their 
closure points. Both are determined by the conditions a$/ac = a$-/aO = 0. These 
special points play a crucial role in determining the nature of the flow and the 
mechanics of vortex detachment and shedding as described in detail by Badr et al. 
(1986) and Badr & Dennis (1987). The movement of the closure point of E, (denoted 
by S,) is remarkable between T = 6 and T = 8. 
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FIGURE 2. The time variation of the lift coefficient C, for R = los and a = 0.5, 1.0 and 3.0. 
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FIGURE 3. The time variation of the drag coefficient C, for R = lo3 and a = 0.5, 1.0 and 3.0. 

At 7 = 1 1 ,  (figures l g ,  lg') ,  E, is detached owing to a transposition of its closure 
point with the one of EL. Simultaneously there is an analogous transposition between 
the closure points of Eg and E f  respectively, so that EZ is now turned towards Ej: and 
Ej" towards downstream. Progressively Ej and Eg, which have the same direction of 
rotation, approach each other until their closure points come into contact to form a 
common one. The two vortices are about to coalesce; details of such a coalescence 
have been described by Coutanceau & MBnard (1985) and numerically by Badr & 
Dennis (1987).  At 7 = 13 (figure l h ) ,  the coalescence of EL and Eg is effective and the 
corresponding vortex E, is detaching owing to the transposition of its closure point 
with that of E f  which is again turned towards the cylinder surface. In  its turn, Ej" 
is elongated along the rotating cylinder and gives rise to what it is logical to call E, 
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because it will be shed just after E,. At time T = 16, (figure l i ) ,  the vortex E, is 
effectively shed away from the cylinder and E, starts growing in a similar way to the 
growth of E, a t  T = 7. So the process continues but the vortices are somewhat 
weaker. 

In  figure 2 we show the variation of the calculated lift coefficient C, with T for the 
case ofR = lo3 and the three rotation rates of a = 0.5, 1.0 and 3.0; figure 3 gives the 
corresponding variation of C,. For the lower rotation rates, a periodic variation 
associated with vortex shedding soon develops and continues indefinitely. For a = 
0.5 the period of about 7 = 9 is completely consistent with the start, a t  7 = 16, of the 
repetition of the sequence of phenomena which first start a t  7 = 7, and which have 
just been described. We can perform a check on the periodicity of the structure of the 
flow by comparing the streamline patterns at times approximately one complete 
period apart. For a = 1.0 we find from figures 2 and 3 that the period is again 
approximately 9.0. I n  figure 4 the streamline patterns found from the calculations 
for a = 1 a t  7 = 7 and at 7 = 16 are shown, together with the experimental 
visualization at 7 = 7. They confirm to reasonably good precision the periodicity of 
the flow field and the excellent measure of agreement with the experiments a t  
7 = 7. 

I n  figure 5, the calculated evolution of the flow field for a = 2 is given, together 
with the experimental flow visualization between T = 1 and 15. At 7 = 1 (figure 5a)  
the first vortex appears where the centre C, and closure point S, coincide. Badr & 
Dennis (1987) describe generally this process. As 7 increases, El grows and is swept 
in the direction of the cylinder rotation while there is no indication of the formation 
of a second vortex. At 7 = 3 (figures 5c ,  5d), a secondary vortex E; is formed 
adjacent to  El similar to the one formed for a = 0.5, but clearly more toward the 
front of the cylinder. At T = 5 (figure 5d ,  5d'), Ei disappears while El has moved 
away from the cylinder. The motion of El away into the wake continues with no more 
vortex formation until 7 = 9 (figures 5e, 5e7, when a new clockwise vortex E; forms 
a t  the top of the cylinder. The growth of E; with time continues until T = 15. 
Between T = 15 and 16, the closure point of E; moves quickly in the downstream 
direction signalling the beginning of its shedding. At = 20 the calculations (which, 
contrary to  the experiments, have been continued until this time) show that a small 
counterclockwise vortex forms very late, initiating probably the alternate vortex 
shedding process but with extremely weak counterclockwise vortices. However, it is 
quite clear that the increase of a tends to suppress the process of vortex formation 
behind the cylinder. This trend is shown both theoretically and experimentally 
throughout figure 5. 

Another equally interesting phenomenon occurs in the case of a = 2 ;  two 
successive transpositions take place between the closure point of E; and the front 
stagnation point T,. At T = 9, the eddy E; has its closure point S; downstream and 
the front stagnation point T, upstream. This is followed immediately by the 
transposition of S; and T, as can be seen a t  = 10. This orientation of S; and T, 
continues until approximately 7 = 16 when T, and S; change positions again and 
soon after Ei starts shedding downstream away from the cylinder surface. The 
excellent comparison between the experimental and theoretical flow patterns shown 
in figure 5 tends to confirm the degree of accuracy of both numerical and 
experimental methods used in this study. 

In  the case of a = 3, a periodic flow pattern does not develop with time as is 
evident from figures 2 and 3. At this speed of rotation, no eddies are formed up to 
7 = 1 unlike the behaviour when a < 2 (see figure 6a). At 7 = 2 (figure 6 b ) ,  an eddy 
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FIGURE 6. The experimental and theoretical flow patterns for R = lo3 and a = 3 at times (a) 7 = 1 ,  
( b )  7 = 2, (c) 7 = 3, ( d )  7 = 4, (e) 7 = 4.2, ( f )  7 = 4.4, (9)  7 = 6, (h)  7 = 10, (i) 7 = 20. The notation 
for primed and unprimed letters and the vortex centres and closure points follows figure 1 .  

10 
1 

7 

FIGURE 7. The time variation of the circulation r around the circular contours r / a  = 1.6,2 and 4 
for the case of R = lo3, a = 2. The symbols V, V, show the time at which the centre of the first 
vortex crosses these boundaries respectively. 

Ei is formed at the top of the cylinder and soon after (at T = 3) another eddy El is 
formed in the first quadrant. The two eddies, which have the same sense of rotation, 
start moving in different directions, as can be seen experimentally and theoretically 
at  T = 4 (figures 6 d ,  6d’ )  and theoretically at 7 = 4.2 (figure 6e) ,  owing to the 
transposition of T, and Si. While Ei is influenced by the high speed of the cylinder 
surface, E, is more influenced by the main stream. Soon after T = 4.2, at r = 4.4 
(figure S f ) ,  EI is washed down to  the frontal part of the cylinder and disappears, 
while El continues shedding downstream. This is followed by no more formation of 
any eddies and the flow field possesses only one stagnation point T, as can be seen 
in figure 6(g, h). As the time increases, the calculated flow field approaches a steady 
state (figure 6h,  i ) .  Comparison with the experiments is excellent until reaching 
r = 6 ;  however, the experimental technique did not visualize the region upstream of 

16-2 
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FIGURE 8. Comparison between the paths of the first vortex obtained theoretically and 
experimentally for R = lo3 and a = 0.5, 1.0 and 2.0. Calculated results: , a =  0.5; 
_ _ _ _ _  , a = l ; -  , a = 2. Experimental points: A, a = 0.5; W ,  a = 1.0; 0,  a = 2.0. 

the cylinder in this case, but analogous situations were visualized for R = 200 and 
a = 2.07 and 3 given by Coutanceau & MBnard (1985). Moreover, following T = 6, 
three-dimensional and instability effects become more pronounced, especially in the 
wake, and therefore no further sensible comparisons can be made. 

The time variation of the dimensionless circulation r round a fixed circular 
contour is also investigated. Figure 7 shows the variation of T with time for the case 
of R = lo3, a = 2 a t  the three contours defined by r / a  = 1.6, 2 and 4. The time at 
which the first vortex centre C, crosses these contours is also labelled in the figure. 
It is clear that the first sharp rise of r a t  the three contours occurs when the centre 
of E, crosses each of them. Subsequent changes of r occur because of the shedding 
of the eddies which follow later. 

To provide some quantitative comparison between the theoretical and ex- 
perimental results, the path of the first vortex centre C, for each of the three cases 
a = 0.5, 1.0 and 2.0 is plotted in figure 8. In  this figure we can discern the effect of 
the blockage ratio of the experiments, which invariably causes the vortices to be 
deflected towards the axis aft of the cylinder after they have detached into the wake 
and more so as they move farther from the cylinder. The experimental points in 
figure 8 were obtained with the 4 cm diameter cylinder, giving the smaller blockage 
ratio. For the 6 cm diameter cylinder (see MBnard 1984) the experimental points are 
generally displaced further towards the axis. Figure 9(a ,  b,  c )  shows a comparison 
between the evolution of the velocity distribution at sections 0 = 0 and 0 = 90' 
obtained both numerically and experimentally. A good comparison is found in all 
cases, with the exception of a small deviation of some of the experimental 
distributions of the x-component of the velocity on the axis 8 = 0 to the rear of the 
cylinder. However, since the velocity is small in this region such a deviation would 
be permissible in the analysis of the experimental results. 
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FIGURE 9. The e’volution of the velocity distribution for the case of R = lo3 and a = 0.5; 
(a)  v,, versus y at 0 = 90°, (b )  v, versus y at 0 = 90°, (c) v, versus z at 0 = 0. Experimental points: 
0 ,  T = 1; m, 7 = 2; A, T = 3 ;  A, 7 = 4 ;  O , 7 = 5 .  

4. Comparison of Navier-Stokes solutions with boundary-layer theory 
As the Reynolds number becomes high, it is well known that boundary-layer 

theory can be applied to study the initial flow past impulsively started cylinders. The 
calculations of the present paper are based on the full Navier-Stokes equations 
without any boundary-layer approximations at  any stage so it is of interest briefly 
to consider the case of large Reynolds number and its relationship with the 
boundary-layer limit of the equations of motion obtained by setting R = 03. The 
solution of the boundary-layer equations was carried out by Ece et al. (1984). Here 
we consider the typical case of R = lo3, a = 1 and provide three solutions for the time 
variation of the lift coefficient. The first one is the small-time analytical solution 
given by Badr & Dennis (1985) and is based on the leading terms of the solution in 
powers of 7 of the full NavierStokes equations, which yields 

C, = -1.4498xah+ah (7) 

where h = 2(27/R)i and the first term on the right-hand side represents the part of 
the lift coefficient due to the pressure forces CLp,  while the second term represents the 
contribution of the friction forces CLF. The second estimate of C, is based on the 
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FIGURE 10. Comparison between the small-time variation of the lift coefficient obtained by solving 
the Navier-Stokes equations analytically and numerically and also by solving the boundary-layer 
limit of the equations for the case of R = lo3, a = 1 : -, numerical solution ; ----, boundary- 
layer solution : - - - , analytical solution. 

solution of the Navier-Stokes equations using the present numerical method. The 
third solution represents the small-time analytical solution of the boundary-layer 
limit (R = co) of the governing equations, which can be expressed as 

Rk, = a( 1287/9n)? 

The three solutions are plotted in figure 10 in the time range r = 0 to 1. It is clear 
from the figure that, while there is reasonable agreement between the numerical 
solution and the analytical approximation (7) to the Navier-Stokes equations, the 
boundary-layer limit of the equations of motion gives an erroneous value of C, with 
a lift force acting in the wrong direction. This is explained by the fact that the lift 
coefficient given in (8) contains only the part of the lift resulting from the skin 
friction and with no contribution from pressure forces. Since the pressure forces 
much outweigh the friction forces in the present problem, the error is considerable. 
It is similarly found that the solution of the boundary-layer limit of the governing 
equations leads to a drag force which is not consistent with the high-Reynolds- 
number solution of the Navier-Stokes equations. 

In  order to compare the streamline patterns with the results given by Ece et al. 
(1984) for R = CO, the case of high Reynolds number R = lo4 is studied for a = 0.6 
in the time range 7 = 0 to  1.1. Ece et al. give exploded views of their computed 
streamline patterns for various rotation rates, since in the limiting case of R = co the 
whole streamline pattern would occupy a space defined by the surface of the cylinder 
and having zero radial thickness. Figure 11 shows the time development of the flow 
field based on the numerical solution of the full governing equations for a typical case 
a = 0.6. Although a quantitative comparison with Ece et al. is uncertain because 
they do not provide their exploded scale, the two flow fields are of a similar character 
qualitatively. The exploded views given in figure 11 are plotted by considering r = ez 
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instead of r = eAz and accordingly the magnification factor is not the same for all 
times since A is a function of time. However, they give the general nature of the flow 
and the appearance of eddies El and E, is clearly shown a t  T = 1.1. 

6. Conclusion 
The unsteady flow past an impulsively started rotating and translating circular 

cylinder has been investigated both theoretically and experimentally for the 
Reynolds-number range lo3 < R < lo4 and for speed ratios up to a = 3. A detailed 
study has been presented for R = lo3. The high-Reynolds-number flow for smaller 
values of a is characterized by the formation of numerous secondary vortices, unlike 
the low- or moderate-Reynolds-number cases. It is found from the numerical work 
that a flow with periodic vortex shedding is established for the lower values of a ( < 
2) and this would presumably continue for an indefinitely large time. It has not been 
possible to study the evolving periodic structure of the flow for a great time in the 
experiments because of limitations of the apparatus, but over the duration of the 
study there is an exact correspondence with the calculated flow. When a = 3 the 
situation is slightly different ; in this case a vortex system is formed at  the surface of 
the cylinder. One vortex is shed but the vortex remaining in contact with the 
cylinder surface is swept round to the front of the cylinder where it is rapidly 
destroyed by the oncoming stream. At this stage the experimental and calculated 
flows still remain in good agreement, but soon thereafter the experimental flow 
becomes turbulent while in the calculations there is no further vortex shedding and 
the flow approaches a steady state. It is of interest to observe that the streamline 
patterns of the large-time solutions for a = 3 (e.g. figure 6g, h) are quite consistent 
(taking into account the reversed direction of rotation of the cylinder) with the flow 
patterns found experimentally in earlier studies, e.g. by Prandtl (1927) (cf. Goldstein 
1938, plate 16) for the slightly greater value a = 4. They are also of a very similar 
character to the steady-state solutions found for LX = 1 a t  R = 5,20 by Badr et al. 
(1989, pp. 594-595). Finally, the effect of using the boundary-layer limit of the 
equations of motion rather than the full Navier-Stokes equations a t  high Reynolds 
number has been briefly investigated. It is found that the calculations based on the 
solution of the boundary-layer equations will not give reliable results for the lift and 
drag unless the effect of pressure is taken into account. Indeed, the boundary-layer 
solution predicts a lift force which is in the opposite direction to the actual total lift. 
Thus the boundary-layer simplification of the equations by setting R = 00 cannot be 
expected to give results at high Reynolds numbers that are consistent with the full 
Navier-Stokes equations in every respect. 

This investigation has been assisted by grants from NATO (No. RG.0416/85) and 
the Natural Sciences and Engineering Research Council of Canada. Some work was 
carried out a t  the Department of Mathematics, University College, London, U.K. by 
one author (S. C. R. D.) as a Royal Society of London Visiting Research Fellow. 
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